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Part A: Overview

1. Similarity searching

2. Voronoi diagrams

3. Approximate Voronoi diagrams

4. Curse of dimensionality
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Similarity Searching

Important task when trying to find patterns in applications involving mining

different types of data such as images, video, time series, text documents,

DNA sequences, etc.

Similarity searching module is a central component of content-based

retrieval in multimedia databases

Problem: finding objects in a data set S that are similar to a query object q
based on some distance measure d which is usually a distance metric

Sample queries:

1. point: objects having particular feature values

2. range: objects whose feature values fall within a given range or where

the distance from some query object falls into a certain range

3. nearest neighbor: objects whose features have values similar to those

of a given query object or set of query objects

4. closest pairs: pairs of objects from the same set or different sets which

are sufficiently similar to each other (variant of spatial join)

Responses invariably use some variant of nearest neighbor finding
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Voronoi Diagrams
Apparently straightforward solution:

1. Partition space into regions where all
points in the region are closer to the

region’s data point than to any other
data point

2. Locate the Voronoi region corre-
sponding to the query point

Problem: storage and construction cost for N d-dimensional points is Θ(Nd/2)

Impractical unless resort to some high-dimensional approximation of a Voronoi

diagram (e.g., OS-tree) which results in approximate nearest neighbors

Exponential factor corresponding to the dimension d of the underlying space in

the complexity bounds when using approximations of Voronoi diagrams (e.g.,

(t, ǫ)-AVD) is shifted to be in terms of the error threshold ǫ rather than in terms

of the number of objects N in the underlying space

1. (1, ǫ)-AVD: O(N/ǫd−1) space and O(log(N/ǫd−1)) time for nearest neigh-

bor query

2. (1/ǫ(d−1)2, ǫ)-AVD: O(N) space and O(t + log N) time for nearest neigh-

bor query
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Approximate Voronoi Diagrams (AVD)

Example partitions of space induced by ǫ neighbor sets

Darkness of shading indicates cardinality of nearest neighbor sets with

white corresponding to 1

(ǫ = 0.10) (ǫ = 0.30) (ǫ = 0.50)
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Approximate Voronoi Diagrams (AVD) Representations
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Partition underlying domain so that

for ǫ ≥ 0, every block b is asso-
ciated with some element rb in S
such that rb is an ǫ-nearest neigh-

bor for all of the points in b (e.g.,

AVD or (1,0.25)-AVD)

Allow up to t ≥ 1 elements rib(1 ≤
i ≤ t) of S to be associated with

each block b for a given ǫ, where

each point in b has one of the rib as

its ǫ-nearest neighbor (e.g., (3,0)-

AVD)
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Problem: Curse of Dimensionality

Number of samples needed to estimate an arbitrary function with a given

level of accuracy grows exponentially with the number of variables (i.e.,

dimensions) that comprise it (Bellman)

For similarity searching, curse means that the number of points in the data

set that need to be examined in deriving the estimate (≡ nearest neighbor)

grows exponentially with the underlying dimension

Effect on nearest neighbor finding is that the process may not be

meaningful in high dimensions

When ratio of variance of distances and expected distances, between two

random points p and q drawn from the data and query distributions,

converges to zero as dimension d gets very large (Beyer et al.)

limd→∞

Variance[dist(p,q)]
Expected[dist(p,q)]

= 0

1. distance to the nearest neighbor and distance to the farthest neighbor

tend to converge as the dimension increases

2. implies that nearest neighbor searching is inefficient as difficult to

differentiate nearest neighbor from other objects

3. assumes uniformly distributed data

Partly alleviated by fact that real-world data is rarely uniformly-distributed
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Alternative View of Curse of Dimensionality

Probability density function (analogous to histogram) of the distances of

the objects is more concentrated and has a larger mean value

Implies similarity search algorithms need to do more work

Worst case when d(x, x) = 0 and d(x, y) = 1 for all y 6= x

Implies must compare every object with every other object

1. can’t always use triangle inequality to prune objects from consideration

2. triangle inequality (i.e., d(q, p) ≤d(p, x) + d(q, x)) implies that any x

such that |d(q, p)− d(p, x)| > ǫ cannot be at a distance of ǫ or less from

q as d(q, x) ≥ d(q, p)− d(p, x) > ǫ

3. when ǫ is small while probability density function is large at d(p, q),

then probability of eliminating an object from consideration via use of

triangle inequality is remaining area under curve which is small (see

left) in contrast to case when distances are more uniform (see right)
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Other Problems

Point and range queries are less complex than nearest neighbor queries

1. easy to do with multi-dimensional index as just need comparison tests

2. nearest neighbor require computation of distance

Euclidean distance needs d multiplications and d− 1 additions

Often we don’t know features describing the objects and thus need aid of

domain experts to identify them
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Solutions Based on Indexing

1. Map objects to a low-dimensional vector space which is then indexed

using one of a number of different data structures such as k-d trees,
R-trees, quadtrees, etc.

use dimensionality reduction: representative points, SVD, DFT, etc.

2. Directly index the objects based on distances from a subset of the objects

making use of data structures such as the vp-tree, M-tree, etc.

useful when only have a distance function indicating similarity (or

dis-similarity) between all pairs of N objects

if change distance metric, then need to rebuild index — not so for

multidimensional index

3. If only have distance information available, then embed the data objects in

a vector space so that the distances of the embedded objects as
measured by the distance metric in the embedding space approximate the
actual distances

commonly known embedding methods include multidimensional

scaling (MDS), Lipschitz embeddings, FastMap, etc.

once a satisfactory embedding has been obtained, the actual search

is facilitated by making use of conventional indexing methods, perhaps

coupled with dimensionality reduction
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Part B:Indexing Low and High Dimensional Spaces

1. Quadtree variants

2. k-d tree

3. R-tree

4. X-tree

5. Bounding sphere methods

SS-tree

SR-tree

6. Methods based on Voronoi diagrams

7. Pyramid technique

8. Methods based on a sequential scan
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Simple Non-Hierarchical Data Structures

Sequential list Inverted List

Name X Y

Chicago 35 42

Mobile 52 10

Toronto 62 77

Buffalo 82 65

Denver 5 45

Omaha 27 35

Atlanta 85 15

Miami 90 5

X Y

Denver Miami

Omaha Mobile

Chicago Atlanta

Mobile Omaha

Toronto Chicago

Buffalo Denver

Atlanta Buffalo

Miami Toronto

Inverted lists:

1. 2 sorted lists

2. data is pointers

3. enables pruning the search with respect to one key
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Grid Method

Divide space into squares of width equal to the search region

Each cell contains a list of all points within it

Assume L∞ distance metric (i.e., Chessboard)

Assume C = uniform distribution of points per cell

Average search time for k-dimensional space is O(F · 2k)

F = number of records found = C, since query region has the width of

a cell

2k = number of cells examined
(0,100) (100,100)

(100,0)(0,0)

y

x

(5,45)
Denver (35,42)

Chicago

(27,35)
Omaha

(52,10)
Mobile

(62,77)
Toronto

(82,65)
Buffalo

(85,15)
Atlanta

(90,5)
Miami
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Point Quadtree (Finkel/Bentley)

Marriage between uniform grid and a binary search tree

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

(52,10)

Mobile

(62,77)

Toronto

(82,65)

Buffalo
(5,45)

Denver

(27,35)

Omaha

(85,15)

Atlanta

(90,5)

Miami

Chicago

Mobile
Toronto

MiamiAtlantaBuffalo

OmahaDenver
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PR Quadtree

1. Regular decomposition point representation

2. Decompose whenever a block contains more than one point

3. Maximum level of decomposition depends on minimum point separation

if two points are very close, then decomposition can be very deep

can be overcome by viewing blocks as buckets with capacity c and

only decomposing a block when it contains more than c points

A

B

D F

Toronto

C E

Buffalo Denver

Chicago Omaha Atlanta Miami

Mobile

(0,100) (100,100)

(100,0)(0,0)

(35,42)
Chicago

(52,10)
Mobile

(62,77)
Toronto

(82,65)
Buffalo

(5,45)
Denver

(27,35)
Omaha

(85,15)
Atlanta

(90,5)
Miami
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Region Search

Ex: Find all points within radius r of point A

A

r

1 2 3
9 10

13

1211

4

5

876

Use of quadtree results in pruning the search space

If a quadrant subdivision point p lies in a region l, then search the

quadrants of p specified by l

1. SE 5. SW, NW 9. All but NW 13. All

2. SE, SW 6. NE 10. All but NE

3. SW 7. NE, NW 11. All but SW

4. SE, NE 8. NW 12. All but SE
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Finding Nearest Object

Ex: find the nearest object to P

Assume PR quadtree for points (i.e., at

most one point per block)

Search neighbors of block 1 in

counterclockwise order

Points are sorted with respect to the space
they occupy which enables pruning the

search space

P

12 8 7 6

13 9 1 4 5

2 3

10 11

D

E C

F

A

B

new F

Algorithm:

1. start at block 2 and compute distance to P from A

2. ignore block 3, even if nonempty, as A is closer to P than any point in 3

3. examine block 4 as distance to SW corner is shorter than the distance
from P to A; however, reject B as it is further from P than A

4. ignore blocks 6, 7, 8, 9, and 10 as the minimum distance to them from

P is greater than the distance from P to A

5. examine block 11 as the distance from P to the S border of 1 is shorter
than distance from P to A; but, reject F as it is further from P than A

If F was moved, a better order would have started with block 11, the
southern neighbor of 1, as it is closest to the new F
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k-d tree (Bentley)

Test one attribute at a time instead of all simultaneously as in the point
quadtree

Usually cycle through all the attributes

Shape of the tree depends on the order in which the data is encountered

(90,5)

Miami

(27,35)

Omaha

(5,45)

Denver

(82,65)

Buffalo

(62,77)

Toronto

(52,10)

Mobile

(0,100) (100,100)

(100,0)(0,0)

(35,42)

Chicago

(85,15)
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Chicago
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Minimum Bounding Rectangles: R-tree (Guttman)
Objects grouped into hierarchies, stored in a structure similar to a B-tree

Object has single bounding rectangle, yet area that it spans may be

included in several bounding rectangles

Drawback: not a disjoint decomposition of space (e.g., Chicago in R1+R2)

Order (m, M) R-tree

1. between m ≤ M/2 and M entries in each node except root

2. at least 2 entries in root unless a leaf node

X-tree (Berchtold/Keim/Kriegel): if split creates too much overlap, then in-

stead of splitting, create a supernode

R0

R0 R1 R2

R3

(0,100) (100,100)

(100,0)(0,0)

y

(5,45)
Denver (35,42)

Chicago
(27,35)
Omaha

(52,10)
Mobile

(62,77)
Toronto

(85,15)
Atlanta

(90,5)
Miami

R5 R6

R4
(82,65)
Buffalo

OmahaDenverR3 TorontoBuffaloR4 MobileChicagoR5 Atlanta MiamiR6

x

R2

R3 R4R1 R5 R6R2

R3
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R*-tree (Beckmann et al.)

Goal: minimize overlap for leaf nodes and area increase for nonleaf nodes

Changes from R-tree:

1. insert into leaf node p for which resulting bounding box has minimum

increase in overlap with bounding boxes of p’s brothers

compare with R-tree where insert into leaf node for which increase

in area is a minimum (minimizes coverage)

2. in case of overflow in p, instead of splitting p as in R-tree, reinsert a

fraction of objects in p (e.g., farthest from centroid)

known as ‘forced reinsertion’ and similar to ‘deferred splitting’ or

‘rotation’ in B-trees

3. in case of true overflow, use a two-stage process (goal: low coverage)
determine axis along which the split takes place

a. sort bounding boxes for each axis on low/high edge to get 2d

lists for d-dimensional data
b. choose axis yielding lowest sum of perimeters for splits based on

sorted orders
determine position of split
a. position where overlap between two nodes is minimized

b. resolve ties by minimizing total area of bounding boxes

Works very well but takes time due to forced reinsertion
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Minimum Bounding Hyperspheres

SS-tree (White/Jain)

1. make use of hierarchy of minimum bounding
hyperspheres

2. based on observation that hierarchy of
minimum bounding hyperspheres is more

suitable for hyperspherical query regions

3. specifying a minimum bounding hypersphere

requires slightly over one half the storage for a

minimum bounding hyperrectangle

enables greater fanout at each node
resulting in shallower trees

4. drawback over minimum bounding
hyperrectangles is that it is impossible cover

space with minimum bounding hyperspheres
without some overlap

(5,45)
Denver

(35,42)
Chicago

(27,35)
Omaha

(52,10)
Mobile

(62,77)
Toronto

(82,65)
Buffalo

(85,15)
Atlanta

(90,5)
Miami

(0,100) (100,100)

(100,0)(0,0)

y

S1

S3

S2

R0

S4
x

SR-tree (Katayama/Satoh)

1. bounding region is intersection of minimum bounding

hyperrectangle and minimum bounding hypersphere

2. motivated by desire to improve performance of SS-tree

by reducing volume of minimum bounding boxes

SR-tree (Katayama/Satoh)

1. bounding region is intersection of minimum bounding

hyperrectangle and minimum bounding hypersphere

2. motivated by desire to improve performance of SS-tree

by reducing volume of minimum bounding boxes

SR-tree (Katayama/Satoh)

1. bounding region is intersection of minimum bounding

hyperrectangle and minimum bounding hypersphere

2. motivated by desire to improve performance of SS-tree

by reducing volume of minimum bounding boxes
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Avoiding Overlapping All of the Leaf Blocks
Assume uniformly-distributed data

1. most data points lie near the boundary of the space that is being split

Ex: for d = 20, 98.5% of the points lie within 10% of the surface

Ex: for d = 100, 98.3% of the points lie within 2% of the surface

2. rarely will all of the dimensions be split even once

Ex: assuming at least M/2 points per leaf node blocks, and at least

one split along each dimension, then total number of points N must

be at least 2dM/2

if d = 20 and M = 10, then N must be at least 5 million to split
along all dimensions once

3. if each region is split at most once, and without loss of generality, split

is in half, then query region usually intersects all the leaf node blocks

query selectivity of 0.01% for d = 20 leads to ‘side length of query

region’=0.63 which means that it intersects all the leaf node blocks

implies a range query will visit each leaf node block

One solution: use a 3-way split along each dimension into three parts of
proportion r, 1− 2r, and r

Sequential scan may be cheaper than using an index due to high
dimensions

We assume our data is not of such high dimensionality!
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Pyramid Technique (Berchtold/Böhm/Kriegel)

Subdivide data space as if it is an onion by peeling off hypervolumes that

are close to the boundary

Subdivide hypercube into 2d pyramids having the center of the data space

as the tip of their cones

Each of the pyramids has one of the faces of the hypercube as its base

Each pyramid is decomposed into slices parallel to its base

Useful when query region side length is greater than half the width of the

data space as won’t have to visit all leaf node blocks

q

q

q

q

Pyramid containing q is the one corresponding to the coordinate i whose
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Methods Based on a Sequential Scan

1. If neighbor finding in high dimensions must access every disk page at

random, then a linear scan may be more efficient

advantage of sequential scan over hierarchical indexing methods is

that actual I/O cost is reduced by being able to scan the data

sequentially instead of at random as only need one disk seek

2. VA-file (Weber et al.)

use bi bits per feature i to approximate feature

impose a d dimensional grid with b =
Pd

i=1 bi grid cells

sequentially scan all grid cells as a filter step to determine possible
candidates which are then checked in their entirety via a disk access

VA-file is an additional representation in the form of a grid which is

imposed on the original data

3. Other methods apply more intelligent quantization processes

VA+-file (Ferhatosmanoglu et al): decorrelate the data with KLT

yielding new features and vary number of bits as well as use clustering
to determine the region partitions

IQ-tree (Berchtold et al): hierarchical like an R-tree with unordered
minimum bounding rectangles
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Part C: Distance-Based Indexing

1. Distance

2. Ball partitioning methods

vp-tree

mvp-tree

3. General hyperplane partitioning methods

gh-tree

GNAT

mb-tree

4. M-tree

5. Sa-tree

6. kNN graph

7. Delaunay graph

8. Spatial approximation sample hierarchy (SASH)
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Basic Definitions

1. Often only information available is a distance function indicating degree of

similarity (or dis-similarity) between all pairs of N data objects

2. Distance metric d: objects must reside in finite metric space (S, d) where

for o1, o2, o3 in S, d must satisfy

d(o1, o2) = d(o2, o1) (symmetry)

d(o1, o2) ≥ 0, d(o1, o2) = 0 iff o1 = o2 (non-negativity)

d(o1, o3) ≤ d(o1, o2) + d(o2, o3) (triangle inequality)

3. Triangle inequality is a key property for pruning search space

4. Non-negativity property enables ignoring negative values in derivations
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Pivots

Identify a distinguished object or subset of the objects termed pivots or

vantage points

1. sort remaining objects based on distances from pivots and build index

2. use index to achieve pruning of other objects during search

Given pivot p ∈ S, for all objects o ∈ S′ ⊆ S, we know:

1. exact value of d(p, o),

2. d(p, o) lies within range [rlo, rhi] of values (ball partitioning) (ball

partitioning) or

drawback is asymmetry of partition as outer shell is usually narrow

3. o is closer to p than to some other object p2 ∈ S (generalized

hyperplane partitioning)

Distances from pivots are useful in pruning the search

S1

p r

S2

S2

p 

p2

Copyright 2010: Hanan Samet Techniques for Similarity Searching for Multimedia Databases Applications

vp-tree (Metric tree; Uhlmann|Yianilos)

Ball partitioning method

Pick p from S and let r be median of distances of other objects from p

Partition S into two sets S1 and S2 where:

S1 = {o ∈ S \ {p} | d(p, o) < r}
S2 = {o ∈ S \ {p} | d(p, o) ≥ r}

Apply recursively, yielding a binary tree with pivot and radius values at

internal nodes

Choosing pivots

1. simplest is to pick at random

2. choose a random sample and then select median

S1

p r

S2

p

S1 S2

<r ≥r
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vp-tree Example
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Increasing Fanout in vp-tree

Fanout of a node in vp-tree is low

Options

1. increase fanout by splitting S into m equal-
sized subsets based on m + 1 bounding

values r0, . . . , rm or even let r0 = 0 and
rm = ∞

2. mvp-tree

each node is equivalent to collapsing

nodes at several levels of vp-tree

use same pivot for each subtree at a level

although the ball radius values differ
rationale: only need one distance
computation per level to visit all nodes at

the level (useful when search backtracks)

a. first pivot i partitions into ball of
radius r1

b. second pivot p partitions inside of the

ball for i into subsets S1 and S2 , and
outside of the ball for i into subsets
S3 and S4

i

p

S2

r2

S3

S1

r1

i
r1

p r2

S1

 S1 ={a,h,q,t}

S2

r3

S3

S2 ={d,j,s}

S3 ={c,g,k,m,o,t}

S1

r

ah

q d

s j
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m
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p

o r
3

S4
e

u

v
f

n

b
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gh-tree (Metric tree; Uhlmann)

Generalized hyperplane partitioning method

Pick p1 and p2 from S and partition S into two sets S1 and S2 where:

S1 = {o ∈ S \ {p1, p2} | d(p1, o) ≤ d(p2, o)}
S2 = {o ∈ S \ {p1, p2} | d(p2, o) < d(p1, o)}

Objects in S1 are closer to p1 than to p2 (or equidistant from both), and
objects in S2 are closer to p2 than to p1

hyperplane corresponds to all points o satisfying d(p1, o) = d(p2, o)

can also “move” hyperplane, by using d(p1, o) = d(p2, o) + m

Apply recursively, yielding a binary tree with two pivots at internal nodes

p1

p2

S1 S2

p1 p2
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gh-tree Example

(a) (b)
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{o,p} {q} {r} {s} {t} {u} {v}

g h i j k l m n

e fc d

a b
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Increasing Fanout in gh-tree

Fanout of a node in gh-tree is low

Geometric Near-neighbor Access tree (GNAT; Brin)

1. increase fanout by adding m pivots P = {p1, . . . , pm} to split S into

S1, . . . , Sm based on which of the objects in P is the closest

2. for any object o ∈ S \ P , o is a member of Si if d(pi, o) ≤ d(pj , o) for all

j = 1, . . . , m

3. store information about ranges of distances between pivots and

objects in the subtrees to facilitate pruning search
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Bisector Tree (bs-tree) (Kalantari/McDonald)

1. gh-trees with covering balls

2. Drawback: covering ball of a node is sometimes larger than that of its

ancestor (termed eccentric)

3. Bad for pruning as want radii of balls to decrease as search descends

x

y

-10 10

-10

10

pa

p1

o1

o2

p2
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mb-tree (Dehne/Noltemeier)

1. Inherit one pivot from ancestor node

2. Fewer pivots and fewer distance computations but perhaps deeper tree

3. Like bucket (k) PR k-d tree as split whenever region has greater than k

objects (k > 1) but region partitions are implicit (defined by pivot objects)

instead of explicit

(a) (b)
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Comparison of mb-tree (BSP tree) and PR k-d tree
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PR k-d tree

1. Regular decomposition point representation

2. Decompose whenever a block contains more than one point, while cycling
through attributes

3. Maximum level of decomposition depends on minimum point separation

if two points are very close, then decomposition can be very deep

can be overcome by viewing blocks as buckets with capacity c and
only decomposing a block when it contains more than c points
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M-tree (Ciaccia et al.)

Dynamic structure based on R-tree

(actually SS-tree)

All objects in leaf nodes

Balls around “routing” objects (like piv-

ots) play same role as minimum bounding
boxes

p1

p3

p2

o

Pivots play similar role as in GNAT, but:

1. all objects are stored in the leaf nodes and an object may be

referenced several times in the M-tree as it could be a routing object in

more than one nonleaf node

2. for an object o in a subtree of node n, the subtree’s pivot p is not
always the one closest to o among all pivots in n

3. object o can be inserted into subtrees of several pivots: a choice

Each nonleaf node n contains up to c entries of format (p, r,D, T )

1. p is the pivot (i.e., routing object)

2. r is the covering radius

3. D is distance from p to its parent pivot p′

4. T points to the subtree
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Delaunay Graph

Definition

1. each object is a node and two nodes have an edge between them if their

Voronoi cells have a common boundary

2. explicit representation of neighbor relations that are implicitly represented
in a Voronoi diagram

equivalent to an index or access structure for the Voronoi diagram

3. search for a nearest neighbor of q starts with an arbitrary object and then
proceeds to a neighboring object closer to q as long as this is possible

Unfortunately we cannot construct Voronoi cells explicitly if only have
interobject distances

Spatial Approximation tree (sa-tree): approximation of the Delaunay graph
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sa-tree (Navarro)

Definition:

1. choose arbitrary object a as root of tree

2. find N(a), smallest possible set of neighbors of a, so that any neighbor

is closer to a than to any other object in N(a)

i.e., x is in N(a) iff for all y ∈ N(a)− {x}, d(x, a) < d(x, y)

all objects in S \N(a) are closer to some object in N(a) than to a

3. objects in N(a) become children of a

4. associate remaining objects in S with closest child of a, and

recursively define subtrees for each child of a
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c
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ut

1. a is root
2. N(a)={b,c,d,e}
3. second level
4. h 6∈ N(a) and N(b) as h

closer to F than to b or a
5. fourth level

Use heuristics to construct sa-tree as N(a) is used in the definition which
makes it circular, and thus resulting tree is not necessarily minimal and not

unique
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kNN Graphs (Sebastian/Kimia)
1. Each vertex has an edge to each of its k nearest neighbors
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2. Problems

graph is not necessarily connected

even if increase k so graph is connected, search may halt at object p

which is closer to q than any of the k nearest neighbors of p but not

closer than all of the objects in p’s neighbor set (e.g., the k + 1st

nearest neighbor)

Ex: search for nearest neighbor of X in 4NN graph starting at any

one of {e,f,j,k,l,m,n} will return k instead of r

overcome by extending size of search neighborhood as in approximate
nearest neighbor search

use several starting points for search (i.e., seeds)

3. Does not require triangle inequality and thus works for arbitrary distances
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Alternative Approximations of the Delaunay Graph

1. Other approximation graphs of the Delaunay graph are connected by

virtue of being supersets of the minimal spanning tree (MST) of the vertices

2. Relative neighborhood graph (RNG): an edge between vertices u and v if

for all vertices p, u is closer to v than is p or v is closer to u than is p — that
is, d(u, v) ≤ Max{d(p, u), d(p, v)}

3. Gabriel graph (GG): an edge between vertices u and v if for all other

vertices p we have that d(u, p)2 + d(v, p)2 ≥ d(u, v)2

4. RNG and GG are not restricted to Euclidean plane or Minkowski metrics

5. MST(E) ⊂RNG(E) ⊂GG(E) ⊂DT(E) in Euclidean plane with edges E

6. MST(E) ⊂RNG(E) ⊂GG(E) in any metric space as DT is only defined for

the two-dimensional Euclidean plane
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Use of Delaunay Graph Approximations

1. Unless approximation graph is a superset of Delaunay graph (which it is

not), to be useful in nearest neighbor searching, we need to be able to

force the algorithm to move to other neighbors of current object p even if

they are farther from q than p

2. Examples:

kNN graph: use extended neighborhood

sa-tree: prune search when can show (with aid of triangle inequality)

that it is impossible to reach the nearest neighbor via a transition to

nearest neighbor or set of neighbors

RNG and GG have advantage that are always connected and don’t

need seeds

advantage of kNN graph is that k nearest neighbors are precomputed
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Spatial Approximation Sample Hierarchy (SASH)(Houle)
Hierarchy of random samples of set of objects S of size S/2, S/4, S/8, . . . , 1

Makes use of approximate nearest neighbors

Has similar properties as the kNN graph

1. both do not require that the triangle inequality be satisfied

2. both are indexes
O(N2) time to build kNN graph as no existing index

SASH is built incrementally level by level starting at root with samples of

increasing size making use of index already built for existing levels

thereby taking O(N log2 N) time

each level of SASH is a kNN tree with maximum k = c

Key to approximation is to treat the “nearest neighbor relation” as an

“equivalence relation” even though this is not generally true

1. assumption of “equivalence” relation is the analog of ǫ

2. no symmetry: x being approximate nearest neighbor of x′ does not mean

that x′ must be an approximate nearest neighbor of x

3. no transitivity: x being approximate nearest neighbor of q and x′ being

approximate nearest neighbor of x does not mean that x′ must be an

approximate nearest neighbor of q

4. construction of SASH is analog of UNION operation

5. finding approximate nearest neighbor is analog of FIND operation
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SASH vis-a-vis Triangle Inequality

Triangle inequality is analogous to transitivity with ≤ corresponding to

“approximate nearest neighbor” relation

Appeal to triangle inequality, d(x′, q) ≤ d(q, x) + d(x′, x), regardless of

whether or not it holds

1. to establish links to objects likely to be neighbors of query object q,

when d(q, x) and d(x′, x) are both very small, then d(q, x′) is also

very small (analogous to “nearest”)

implies if x ∈ S \ S′ is a highly ranked neighbor of both q and

x′ ∈ S′ among objects in S \ S′, then x′ is also likely to be a highly

ranked neighbor of q among objects in S′

x′ is a highly ranked neighbor of x (symmetry)

AND x is a highly ranked neighbor of q

RESULT: x′ is a highly ranked neighbor of q (transitivity)

2. INSTEAD of to eliminate objects that are guaranteed not to be

neighbors
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Mechanics of SASH

SASH construction (UNION of UNION-FIND)

1. form hierarchy of samples

2. assume SASHi has been built and process sample S′

know that x in SASHi\SASHi−1 is one of p approximate nearest

neighbors of x′ ∈ S′ and use SASHi to determine x

infer that x′ is one of c > p approximate nearest neighbors in S′ of x

(symmetry)

3. special handling to ensure that every object at level i + 1 is an

approximate nearest neighbor of at least one object at level i (i.e., no

orphan objects)

Finding k approximate nearest neighbors of q (FIND of UNION-FIND)

1. follow links from level i− 1 of SASH to level i retaining in Ui the ki

approximate nearest neighbors of q at level i of the SASH

2. determine k approximate nearest neighbors of q from the union of Ui

over all levels of the SASH

3. know that x in Ui is an approximate nearest neighbor of q

4. know that x′ in Ui+1 is an approximate nearest neighbor of x in Ui

5. infer that x′ in Ui+1 is an approximate nearest neighbor of q

(transitivity)
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Example of SASH construction

Ex: P=2 C=5

Initially, no choice in the first 3 levels

Find two closest objects at level 4 for each
object at level 5

f:k,m n:k,m

p:k,r l:k,m

c:a,h d:a,h

i:h,k d:h,r

o:k,r

Retain 5 nearest neighbors at level 5 to

each object at level 4

k:{f,n,p,l,i,oX}

m:f,n,l

n:c,d,i,q

a:c,d

Ignore o as k has 5 closer neighbors
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Example SASH Approximate k Nearest Neighbor Finding

Ex: k = 3 and query object c

Let f(k, i) = ki = k1−(h−i)/ log
2

N yielding ki = (1, 1, 2, 2, 3)

U1 = root g of SASH

U2 = objects reachable from U1 which is e

U3 = objects reachable form U2 which is b and j which are retained as
k3 = 2

U4 objects reachable from U3 which is {a,h,k,m,r} and we retain just a and
h in U4 as k4 = 2

U5 = objects reachable form U4 which is {c,d,i,q}, and we retain just c, d,
and q in U5 as k5 = 3

Take union of U1, U2, U3, U4, U5 which is the set {a,b,c,d,e,g,h,i,j,k,m,q,r},
and the closest three neighbors to query object c are a, b, and d
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Drawback of SASH

Assumes that if a at level i is an approximate nearest neighbor of o at level

i + 1, then by symmetry o is likely to be an approximate nearest neighbor

of a, which is not generally true

Ex: objects at level i are not necessarily linked to their nearest neighbors

at level i + 1

P1

C1 C2 C3

P2

C6
C5

C4

C7 C8

P3 P4

C9

P1 P2 P3 P4

C1 C2 C3 C4 C5 C6 C7 C8 C9Level  i+1:

Level  i:

P3 and P4 at level i are linked to the sets of three objects {C4,C5, C6} and

{C7,C8, C9}, respectively, at level i+1, instead of to their nearest neighbors

C1, C2, and C3 at level i+1.
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Part D: Nearest Neighbor Finding

1. Classical methods such as branch and bound

2. K nearest neighbors

3. Incremental nearest neighbor finding

General method

Permitting duplicate instances of objects

4. Approximate nearest neighbor finding

5. Probably approximately correct (PAC) nearest neighbor finding
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Branch and Bound Algorithm (Fukunaga/Narendra)

1. Visit elements in hierarchy using a depth-first traversal

maintain a list L of current candidate k nearest neighbors

2. Dk: distance between q and the farthest object in L

Dk = maxo∈L{d(q, o)}), or ∞ if L contains fewer than k objects

Dk is monotonically non-increasing over the course of the search

traversal, and eventually reaches the distance of the kth nearest

neighbor of q

3. If element et being visited represents an object o (i.e., t = 0), then insert o

into L, removing farthest if |L| > k

4. Otherwise, et (t ≥ 1) is not an object

construct an active list A(et) of child elements of et, ordered by

“distance” from q

recursively visit the elements in A(et) in order, backtracking when

a. all elements have been visited, or
b. reaching an element et′ ∈ A(et) with dt′(q, et′) > Dk

condition ensures that all objects at distance of kth nearest
neighbor are reported

if sufficient to report k objects, then use dt′(q, et′) ≥ Dk
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Incremental Nearest Neighbors (Hjaltason/Samet)

Motivation

1. often don’t know in advance how many neighbors will need

2. e.g., want nearest city to Chicago with population > 1 million

Several approaches

1. guess some area range around Chicago and check populations of

cities in range

if find a city with population > 1 million, must make sure that there
are no other cities that are closer with population > 1 million

inefficient as have to guess size of area to search

problem with guessing is we may choose too small a region or too
large a region

a. if size too small, area may not contain any cities with right
population and need to expand the search region

b. if size too large, may be examining many cities needlessly

2. sort all the cities by distance from Chicago

impractical as we need to re-sort them each time pose a similar
query with respect to another city

also sorting is overkill when only need first few neighbors

3. find k closest neighbors and check population condition
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Mechanics of Incremental Nearest Neighbor Algorithm

Make use of a search hierarchy (e.g., tree) where

1. objects at lowest level

2. object approximations are at next level (e.g., bounding boxes in an

R-tree)

3. nonleaf nodes in a tree-based index

Traverse search hierarchy in a “best-first” manner similar to A*-algorithm

instead of more traditional depth-first or breadth-first manners

1. at each step, visit element with smallest distance from query object
among all unvisited elements in the search hierarchy

i.e., all unvisited elements whose parents have been visited

2. use a global list of elements, organized by their distance from query
object

use a priority queue as it supports necessary insert and delete
minimum operations
ties in distance: priority to lower type numbers

if still tied, priority to elements deeper in search hierarchy
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Incremental Nearest Neighbor Algorithm

Algorithm:

INCNEAREST(q, S, T )

1 Q← NEWPRIORITYQUEUE()

2 et ← root of the search hierarchy induced by q, S, and T
3 ENQUEUE(Q, et, 0)

4 while not ISEMPTY(Q) do

5 et ← DEQUEUE(Q)

6 if t = 0 then /* et is an object */

7 Report et as the next nearest object

8 else

9 for each child element et′ of et do

10 ENQUEUE(Q, et′ , dt′(q, et′))

1. Lines 1-3 initialize priority queue with root

2. In main loop take element et closest to q off the queue

report et as next nearest object if et is an object

otherwise, insert child elements of et into priority queue
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Example of INCNEAREST

Initially, algorithm descends tree to leaf node containing q

expand n

expand n1

Start growing search region

expand n3

report e as nearest neighbor
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VASCO Spatial Applet

http://www.cs.umd.edu/users/hjs/quadtree/index.html
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Complexity Analysis

Algorithm is I/O optimal

no nodes outside search region are accessed

better pruning than branch and bound algorithm

Observations for finding k nearest neighbors for uniformly-distributed

two-dimensional points

expected # of points on priority queue: O(
√

k)

expected # of leaf nodes intersecting search region: O(k +
√

k)

In worst case, priority queue will be as large as entire data set

        
        
        
        

        
        
        
        
        
        

          
          
          
          
          
          

e.g., when data objects are all nearly

equidistant from query object

probability of worst case very low, as it

depends on a particular configuration of

both the data objects and the query object

(but: curse of dimensionality!)
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Duplicate Instances of Objects

Objects with extent such as lines, rectangles, regions, etc. are indexed by

methods that associate the objects with the different blocks that they
occupy

Indexes employ a disjoint decomposition of space in contrast to

non-disjoint as is the case for bounding box hierarchies (e.g., R-tree)

Search hierarchies will contain multiple references to some objects

Adapting incremental nearest neighbor algorithm:

1. make sure to detect all duplicate instances that are currently in priority
queue

2. avoid inserting duplicate instances of an object that has already been

reported
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Duplicate Instances Algorithm

INCNEARESTDUP(q, S, T )

1 Q← NEWPRIORITYQUEUE()

2 et ← root of the search hierarchy induced by q, S, and T
3 ENQUEUE(Q, et, 0)

4 while not ISEMPTY(Q) do

5 et ← DEQUEUE(Q)

6 if t = 0 then /* et is an object */

7 while et = FIRST(Q) do

8 DELETEFIRST(Q)

9 Report et as the next nearest object

10 else /* et is not an object */

11 for each child element et′ of et do

12 if t′ > 0 or dt′(q, et′) ≥ dt(q, et) then

13 ENQUEUE(Q, et′ , dt′(q, et′))
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Differences from INCNEAREST

1. Object o (et′ ) is enqueued only if o has not yet been reported

check if o’s distance from q is less than distance from et to q (line 12)

if yes, then o must have been encountered in an element et′′ which
was closer to q and hence already been reported

2. Check for multiple instances of object o and report only once (lines 7–9)

3. Order objects in queue by identity when at same distance

4. Retrieve all nodes in the queue before objects at same distance

important because an object can have several ancestor nodes of the
same type

interesting as unlike INCNEAREST where want to report neighbors as
soon as possible so break ties by giving priority to elements with lower

type numbers
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VASCO Spatial Applet

http://www.cs.umd.edu/users/hjs/quadtree/index.html
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INCNEAREST Extensions

1. Incremental range query

2. Incremental retrieval of k nearest neighbors

need an extra queue to keep track of k neighbors found so far and can

use distance dk from q of the kth candidate nearest neighbor ok to

reduce number of priority queue operations

3. Farthest neighbor

4. Pairs of objects

distance join

distance semi-join
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Approximate Nearest Neighbors

1. Often, obtaining exact results is not critical and willing to trade off accuracy

for improved performance

2. Let ǫ denote the approximation error tolerance

common criterion is that the distance between q and the resulting

candidate nearest neighbor o′ is within a factor of 1 + ǫ of the distance

to the actual nearest neighbor o

i.e., d(q, o′) ≤ (1 + ǫ)d(q, o)
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Approximate Nearest Neighbors with INCNEAREST

1. Modify INCNEAREST by multiplying the key values for non-object elements

on the priority queue by 1 + ǫ

in a practical sense, non-object element et is enqueued with a larger

distance value — that is, by a factor of (1 + ǫ)

implies that we delay its processing, thereby allowing objects to be

reported ‘before their time’

e.g., once et is finally processed, all objects o satisfying

d(q, o) ≤ (1 + ǫ)dt(q, et) (which is greater than dt(q, et) if ǫ > 0) would

have already been reported

thus an object c in et with a distance d(q, c) ≤ d(q, o) could exist, yet o

is reported before c

algorithm does not necessarily report the resulting objects in strictly

increasing order of their distance from q

2. Different from Arya/Mount algorithm which cannot be incremental as

priority queue only contains non-object elements

shrinks distance r from q to the closest object o by a factor of 1 + ǫ and

only inserts a non-object element e into the priority queue if the

distance d(b, q) of e’s corresponding block b from q is less than the

shrunken distance
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Probably Approximately Correct (PAC) Nearest

Neighbors (Ciaccia/Patella)

Relax approximate nearest neighbor condition by stipulating a maximum

probability δ for tolerating failure, thereby enabling the decision process to

halt sooner at the risk δ of being wrong

Object o′ is considered a PAC-nearest neighbor of q if the probability that

d(q, o′) ≤ (1 + ǫ) · d(q, o) is at least 1− δ, where o is actual nearest neighbor

Alternatively, given ǫ and δ, 1− δ is the minimum probability that o′ is the

(1 + ǫ)-approximate nearest neighbor of q

Ciaccia and Patella use information about the distances between q and the
data objects to derive an upper bound s on the distance between q and a

PAC-nearest neighbor o′

Distance bound s is used during the actual nearest neighbor search as a

pre-established halting condition — that is, the search can be halted once

locating an object o′ with d(q, o′) ≤ s

Method is analogous to executing a variant of a range query, where the

range is defined by the distance bound s, which halts on the first object in
the range

Difficulty is determining a relationship between δ and the distance bound s
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Concluding Remarks

1. Similarity search is a broad area of research

2. Much relation to geometry; geometric setting is usually missing

3. Progress is heavily influenced by applications

4. Need to look at old literature to be able to evaluate current research results

5. Much is left to do as difficult to say what is best solution
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